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Analysis and Optimization of the Performance of a
Convolutionally Encoded Deep-Space Link in

the Presence of Spacecraft Oscillator
Phase Noise

S. Shambayati1

In order to reduce the cost of deep-space missions, NASA is exploring the possi-
bility of using new, cheaper technologies. Among these is the possibility of replacing
ultra-stable oscillators (USOs) onboard the spacecraft with oscillators with measur-
able phase noise. In addition, it is proposed that these spacecraft use higher 32-GHz
(Ka-band) radio frequencies in order to save mass. In this article, the performance
of a convolutionally encoded deep-space link using non-USO-type oscillators on-
board the spacecraft at Ka-band is analyzed. It is shown that the ground-receiver
tracking-loop bandwidth settings need to be optimized and that, by selecting an os-
cillator with good phase-noise characteristics, the minimum required power onboard
the spacecraft could be reduced by as much as 10 dB.

I. Introduction

Due to budget constraints, new NASA deep-space missions have been forced to use newer technologies
and to do without items once considered essential on deep-space missions. One of the new technologies
that is being considered is the use of higher radio frequencies, namely 32-GHz (Ka-band), and one of the
items that these new missions have to do without is the expensive ultra-stable oscillator (USO). In this
article, we analyze the combined effect of the use of higher frequencies (i.e., Ka-band) with non-USO-type
oscillators on the telemetry performance of a residual-carrier modulation link employing convolutional
codes for error correction. Furthermore, we will show how this analysis is used to optimize the performance
of the channel by optimizing the receiver tracking-loop settings and why this optimization is necessary,
especially at low data rates.

In Section II of this article, we present the theoretical model of a channel employing a non-USO-type
oscillator and show how the tracking-loop bandwidth could be optimized based on this analysis. In
Section III, we show why this optimization is necessary by demonstrating that a bandwidth-optimized
loop tracks the signal significantly better than does a non-optimized loop. In Section IV, we present
the results of such an optimization for the Deep Space Network’s (DSN’s) Block V Receiver (BVR) and
NASA’s (7,1/2) and (15,1/6) convolutional codes. The range of phase-noise levels for which this analysis
is performed represents the Ka-band performance of the non-USO-type oscillators in use by the current
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set of NASA’s deep-space missions. These results indicate that, while at high data rates the noise level
of the oscillator has very little effect (less than 1 dB) on the total power required onboard the spacecraft
to close the link, the choice of the oscillator could mean as much as 10 dB less/more power for closing
the link at low data rates. In Section V, we present our conclusions.

II. Theoretical Approach

Most non-USO-type oscillators exhibit a one-sided power spectral density given by

Sφ(∆f) =
C3

∆f3
(1)

where ∆f is the absolute frequency offset from the center frequency of the oscillator and C3 is the
oscillator spectral density at a 1-Hz offset. In residual-carrier-modulation transmission, the phase and
the frequency of the carrier are tracked by a phase-locked loop (PLL). It is assumed that the tracking
phase error, ∆φ, has approximately a Tikhonov probability density function [1–3] given by

P∆φ(θ) =


exp

(
cos(θ)
σ2

∆φ

)
2× π × I0(σ−2

∆φ)
−π ≤ θ < π

0 otherwise

(2)

where σ2
∆φ is the variance of the tracking phase error. Assuming that the PLL filter has a bandwidth of

Bl, then σ2
∆φ is given by2

σ2
∆φ =

k × C3

B2
l

+
Bl

Pc

N0

(3)

where Pc/N0 is the carrier-signal-to-noise ratio and k is the PLL filter’s coefficient.

In order to improve the tracking performance of the PLL, we want to minimize σ2
∆φ for a given Pc/N0.

Thus, we need to calculate the optimum value of Bl, Blopt , in Eq. (3). Doing so gives

Blopt = 3

√
2× k × C3 ×

Pc

N0
(4)

Substituting Eq. (4) in Eq. (3), we obtain

σ2
∆φ,opt

(
Pc

N0

)
=

3× 3
√

k × C3(
2Pc

N0

)2/3
(5)

2 S. Shambayati, “Preliminary Results on Optimum Settings for BVR for Tracking of Voyager 1,” JPL Interoffice Memo-
randum (internal document), Jet Propulsion Laboratory, Pasadena, California, 1995.
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One uses σ2
∆φ to calculate the radio loss of convolutional codes. There are three models for radio losses

of such codes [1]: high rate, low rate, and medium rate.

The high-rate model is used when the data rate is much higher than the PLL bandwidth. The bit-error
probability for the convolutional code in that case is given by

BER(high) =

π∫
θ=−π

fBER

(
cos2(θ)× Eb

N0

)
P∆φ(θ)dθ (6)

where fBER is the ideal bit-error rate (BER) function for the convolutional code, P∆φ(θ) is the probability
density function of the tracking error as given in Eq. (2), and Eb/N0 is the input bit-signal-to-noise ratio.

The low-rate model applies when the data rate is much lower than the PLL bandwidth. In this case,
it is assumed that the bit-error rate is equal to the value of fBER at the average bit-signal-to-noise ratio.
In other words,

BER(low) = fBER

 π∫
θ=−π

cos2(θ)× Eb

N0
P∆φ(θ)dθ

 (7)

The medium-rate model applies when the other two models do not. In this case, there is no straight
analytical solution, and the medium-rate model is calculated by interpolation between the high-rate model
and the low-rate model [1]:

BER(med) = ac × BER(high) + (1− ac)× BER(low) (8)

According to [1], ac is given by

ac =
δc

4

{
1− δc

8

[
1− exp

(−8
δc

)]}
(9)

where

δc =
1

Bl × T
(10)

and T is the period of time over which the value of the bit is determined. For convolutional codes, T is
usually several times the constraint length of the code. In this article, it is assumed that T is five times
the constraint length of the code. Thus, for (7,1/2) code, T is 35 bit times and, for (15,1/6) code, it is
75 bit times.

When phase noise is present, we use Blopt for Bl in order to minimize the bit-error rate; therefore,
Eqs. (6) through (8) could all be viewed as functions of the bit duration: k, C3, Pc/N0, and Eb/N0. There-
fore, given a bit rate, Rb, and k, C3, and Pc/N0, and a required bit-error rate, pb, Eqs. (6) through (10)
could be used to calculate the required Eb/N0. Therefore, we can define the required Eb/N0, (Eb/N0)r,
as a function of k, C3, Pc/N0, Rb, and pb:
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(
Eb

N0

)
r

= fSNR

(
k, C3,

Pc

N0
, Rb, pb

)
(11)

Note that, in general, there is no closed-form solution for fSNR; however, using numerical methods, its
value could be approximated.

Let (Eb/N0)pb
be the value of Eb/N0 for which the bit-error rate is pb under perfect phase-tracking

conditions (i.e., σ2
∆φ = 0). Then the radio loss, Lradio, is given by

Lradio =

(
Eb

N0

)
r(

Eb

N0

)
pb

(12)

where (Eb/N0)r is given by Eq. (11).

Given (Eb/N0)r, Pc/N0, and Rb, then the total power-to-noise ratio, Pt/N0, is given by

Pt

N0
=

Pc

N0
+ Rb ×

(
Eb

N0

)
r

(13)

Since (Eb/N0)r is a function of k, C3, Pc/N0, Rb, and pb, then Pt/N0 is also a function of these parameters.
Therefore, given an oscillator (hence C3), a ground receiver (hence k), and a bit-error rate, pb, for any
data rate Rb, we can minimize Pt/N0 as a function of Pc/N0. This is important since on deep-space
missions the limiting factor in telecommunications is always total available power. Let (Pc/N0)opt be
the value for which Pt/N0 is minimized, and let (Pt/N0)min be the minimized value; then the optimum
modulation index, mopt, could be obtained by

mopt = Arccos


√√√√√√√√

(
Pc

N0

)
opt(

Pt

N0

)
min

 (14)

It should be noted that, in the literature [4], instead of C3 another metric, L1, is used, where

L1 = 10× log(0.5× C3) (15)

The units of L1 are dBc/Hz. For the rest of this article, all the results will be identified in terms of L1.

In the following section, we show the sensitivity of loop signal-to-noise ratio to the level phase noise.
Then, we will use the equations in this section to calculate (Pt/N0)min and mopt for different data rates
and different levels of oscillator phase noise for (15,1/6) and (7,1/2) convolutional codes for a bit-error
rate of 0.001 when the signal is demodulated using a BVR.
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III. Sensitivity of PLL Loop Signal-to-Noise Ratio to Oscillator Phase Instability
and the Necessity of Optimization of the Loop Bandwidth

One question that arises from the discussions presented in the previous section is whether or not it
is necessary to optimize the PLL loop bandwidth. To answer this question, one has to first define a
metric that indicates how accurately the PLL tracks the phase of the received signal. The PLL loop
signal-to-noise ratio (LSNR) is such a metric. LSNR is defined as σ−2

∆φ. In this section, we will show
that it is necessary to optimize the loop bandwidth by comparing the LSNR of an optimized receiver
with the LSNR of a receiver with constant loop bandwidth for different values of loop bandwidth and
different phase-noise levels. Three loop bandwidth values of 3 Hz, 10 Hz, and 30 Hz are chosen for this
comparison. The phase-noise levels that are selected are L1 = −10.57 dBc/Hz, L1 = −4.55 dBc/Hz,
and L1 = 7.49 dBc/Hz. The PLL is assumed to have a second-order underdamped loop with k = 8.7
(this is the actual value used for the DSN’s BVR receiver PLL [4]). The results are presented in Figs. 1
through 4.

Figure 1 represents the optimum loop bandwidth, Blopt , as a function of Pc/N0 for the values of L1

under consideration. First of all, we note that values of Blopt cover a wide range. This indicates that the
value of the loop bandwidth needs to be optimized for the specific link conditions. Second of all, we note
that, as L1 increases, the value of Blopt increases for the same value of Pc/N0. This is due to the fact
that the carrier energy is more spread out for larger values of L1. Therefore, the loop bandwidth needs
to be wider to capture the energy in the carrier for higher values of L1.

Figures 2 through 4 show LSNR values for optimized loop bandwidths and bandwidths of 3 Hz, 10 Hz,
and 30 Hz for L1 = −10.57 dBc/Hz, L1 = −4.55 dBc/Hz, and L1 = 7.49 dBc/Hz, respectively. As
we can see from these figures, the optimized bandwidth has a decidedly higher LSNR than does the
fixed bandwidth. The only time that the fixed bandwidth LSNR is comparable to that of the optimized
bandwidth is when the optimized bandwidth happens to be close in value to the fixed bandwidth. This
indicates that, in the presence of significant phase noise on the spacecraft oscillator, it is necessary to
optimize the ground-receiver loop bandwidth in order to minimize ground-receiver loop-tracking error.
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Fig. 1.  Optimum loop bandwidth (BW) versus Pc / N 0 .
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Fig. 2.  LSNR versus Pc / N 0 , for L 1 = -10.57 dBc.

LOOP SNR, OPTIMUM BW

LOOP SNR AT 30-Hz BW

LOOP SNR AT 10-Hz BW

LOOP SNR AT 3-Hz BW

0

25

15

5

15 20 25 30 35 40 45 50

10

20

30

Pc / N 0, dB

LS
N

R
, d

B

Fig. 3.  LSNR versus Pc / N 0 , for L 1 = -4.55 dBc/Hz.
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IV. Noise Deep-Space Link Optimization with (15,1/6) and (7,1/2) Convolutional
Codes

The BVR is used by the DSN to track residual-carrier and suppressed-carrier data from deep-space
missions. The BVR uses a digital PLL to track the carrier of a residual-carrier signal. This PLL requires
a minimum of 10-dB LSNR,3 which corresponds to a 0.01 variance for the phase error. Furthermore, the
BVR always suffers a minimum of 0.3-dB radio loss [4] in actual operations. Given these two constraints,

3 P. W. Kinman, personal communication, Case Western Reserve University, Cleveland, Ohio, 1998.
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Fig. 4.  LSNR versus Pc / N 0 , for L 1 = 7.49 dBc.
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we will use the approach outlined in the previous section to evaluate (Pt/N0)min for different data rates
and different oscillator phase-noise characteristics.

Two kinds of convolutional codes are considered here: (7,1/2) and (15,1/6). The bit-error rate func-
tions, fBER, for both of these codes has the form [1]

fBER

(
Eb

N0

)
=

 exp
(

α0 − α1 ×
Eb

N0

)
Eb

N0
>

ln(2) + α0

α1

0.5 otherwise

(16)

For (7,1/2) code, α0 = 4.4514 and α1 = 5.7230 [1]. For (15,1/6) code, α0 = 9.807 and α1 = 14.064.4

For analysis purposes, we consider L1 values between −10.57 dBc/Hz, which corresponds roughly to the
type of auxiliary oscillator on the Deep Space 1 (DS1) spacecraft5 operating at Ka-band, and 7.57 dBc/Hz,
which corresponds roughly to the type of auxiliary oscillator on the Voyager spacecraft operating at
Ka-band.6 The data rates that are considered are between 10 b/s and 1 Mb/s, which covers the range
of data rates typically used for deep-space missions. The bit-error rate at which the optimization is
performed is 0.001 at the output of the convolutional decoder. This corresponds to the case when the
convolutional code is concatenated with a (255,223) Reed–Solomon code and the output bit-error rate
of the Reed–Solomon decoder is less than 10−6. Note that this assumes an infinite interleaving depth
for the Reed–Solomon code words. In practice, when the interleaving depth is finite, the bit-error rate
performance of the Reed–Solomon code for higher data rates is much greater than 10−6.

4 S. J. Dolinar, “Empirical Formula for the Performance of the Recommended (15,1/6) Convolutional Code,” JPL Interoffice
Memorandum (internal document), Jet Propulsion Laboratory, Pasadena, California, 1990.

5 C. Chen, personal communication, Jet Propulsion Laboratory, Pasadena, California, 1998.

6 P. W. Kinman, “Tracking the Voyager 1 Auxiliary Oscillator with Narrow Carrier Loop,” Memorandum, Case Western
Reserve University, Cleveland, Ohio, 1995.
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Both (Pt/N0)min and mopt for the two convolutional codes are represented in Figs. 5 through 8. While
the (Pt/N0)min curves (Figs. 5 and 7) seem smooth, there are irregularities in the curves for mopt. This
is due to the numerical techniques that were used to obtain (Pt/N0)min and mopt, and to the inaccuracy
of the medium-rate model. While the numbers in these figures do not represent the true optimum values,
they are accurate enough for engineering and design purposes. Thus, the following conclusions could be
drawn from them:

(1) The more unstable an oscillator, the lower the modulation index should be for the receiver
to be able to track the signal optimally. The reason for this is as follows: Since the
instability of the oscillator means that the signal energy is spread out over a wider
band, we need a larger loop bandwidth to track the signal. Therefore, by using a larger
bandwidth, we allow an increase in the noise energy entering the tracking loop. This
means that in order to achieve the desired LSNR we need to have more power in the
carrier. The only way to achieve this is by decreasing the modulation index.

(2) To communicate at lower data rates, it is necessary to have a low-noise oscillator in order
to lower (Pt/N0)min. As we can see from Figs. 5 and 7, as the data rate increases, the
values of (Pt/N0)min for different oscillator phase-noise levels converge. However, at lower
data rates, the difference between (Pt/N0)min for a low-noise (more stable) oscillator and
a noisy (less stable) oscillator could be as high as 10 dB. This is due to the fact that, at
high data rates, the total energy received on the ground is dominated by the energy in
the data. This means that, in order to minimize Pt/N0, one has to minimize the energy
required in the data and, thus, minimize the required bit signal-to-noise ratio, (Eb/N0)r

[see Eqs. (11) and (13)]. In order to minimize (Eb/N0)r, one has to increase the LSNR
for the PLL and, thus, Pc/N0 [see Eq. (5)]. Since the BVR has a minimum loss of 0.3 dB,
for any noise level at high data rates, only enough energy is needed in the carrier to bring
the radio loss in the PLL down to 0.3 dB. For (7,1/2) code, this is achieved at an LSNR
of 14.4 dB, and, for (15,1/6) code, this is achieved at an LSNR of 15.3 dB. Selecting
16-dB LSNR as an upper bound for these values, we can see from Figs. 2 through 4 that
this is achieved when Pc/N0 is between 30 and 38 dB. At high data rates, typical values
for (Pt/N0)min are higher than 45 dB (see Figs. 5 and 7). At this level of Pt/N0, the
difference between 30 dB and 38 dB in Pc/N0 translates to a difference of only 0.7 dB
in Pt/N0. On the other hand, at low data rates, Pt/N0 is dominated by Pc/N0. A
minimum of 10-dB LSNR is required for the PLL to track the phase. Therefore, the
difference between (Pt/N0)min for a noisy oscillator and (Pt/N0)min for a more stable
oscillator at low data rates is the difference between the value of Pc/N0 that gives an
LSNR of 10 dB for the noisy oscillator and the value of Pc/N0 that gives an LSNR of
10 dB for the more stable oscillator. As we can see from Figs. 2 through 4, the noisiest
oscillator considered here (L1 = 7.49 dBc/Hz) requires roughly 10 dB more Pc/N0 (30 dB
to 20 dB) than the most stable oscillator considered (L1 = −10.57 dBc/Hz). Therefore,
the noisiest oscillator requires approximately 10 dB more Pt/N0 in order to close the link
than does the most stable oscillator under consideration. This shows that, by selecting
an oscillator with good phase-noise characteristics, we can require less power from the
spacecraft in order to close the link at low data rates.

Note that the results presented here are valid only for convolutional codes or concatenated codes
with infinite interleaving. For block codes (including turbo codes) and concatenated codes with finite
interleaving, this approach should be modified to take into account the fact that the decisions are made
over blocks/frames. This means that the decision period is equal to the block/frame time (the duration
of time it takes to transmit a single block/frame) and not some number of constraint lengths (in the
case of this article, five times the constraint length) of the convolutional code. Therefore, in order to
apply the model presented in this article to these types of codes, one has to obtain the frame-error rate
function for these codes and replace T , the decision period, with Tf , the frame duration, in Eq. (10),
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Fig. 5.  Minimum Pt / N 0 versus data rate for different phase-
noise levels, for (7,1/2) code and BER = 0.001.
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Fig. 6.  Optimum modulation index versus data rate for differ-
ent phase-noise levels, for (7,1/2) code and BER = 0.001.
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and perform the analysis for required frame/block error rates. Furthermore, these results are applicable
only to standard residual-carrier tracking of binary-phase-shift keyed (BPSK) signals. The results for
other tracking methods, such as sideband-aided and data-aided tracking, are different from the results
presented in this article, due to different loss characteristics exhibited by such schemes.

V. Conclusions

In this article, we have developed the methodology for evaluating the effect of spacecraft oscillator
phase noise on telemetry performance of a convolutionally coded, residual-carrier-modulated, deep-space
link. We have shown that, when the oscillator phase noise is significant, it is necessary to optimize
the loop bandwidth of the ground receiver in order to minimize the required transmission power from
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Fig. 7.  Minimum Pt / N 0 versus data rate for different phase-
noise levels, for (15,1/6) code and BER = 0.001.
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Fig. 8.  Optimum modulation index versus data rate for differ-
ent phase-noise levels, for (15,1/6) code and BER = 0.001.
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the spacecraft. Furthermore, we have shown that, for the standard NASA convolutional codes—that is,
(7,1/2) and (15,1/6)—selecting an oscillator with good phase-noise characteristics could reduce spacecraft
transmission-power requirements significantly (by as much as 10 dB). This is due to the fact that, at low
data rates, the minimum power requirement for the receiver to maintain lock is higher for oscillators with
higher noise levels.
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